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Abstract
In this report we describe a method for representing shape using portions of algebraic

surfaces bounded by rectangular boxes described in terms of triple product Bernstein
polynomials and we outline some of their properties. The method is extended to handle
piecewise continuous algebraic surfaces within rectangular boxes defined in terms of triple
products of B-spline basis functions. Next two techniques for sculptured shape creation
using primitive data are studied. The first is based on geometric manipulation of existing
primitives and the second on approximation/interpolation of lower dimensional entities using
least squares techniques. In addition, several interrogation techniques used in the creation
and analysis of piecewise continuous algebraic surfaces are presented, such as contouring,

ray tracing, volume and moment of inertia and curvature evaluations.
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1. Introduction and Qutline

Over the past two decades, there has been significant work in the area of Computer
Aided Design on shape representation using piecewise continuous parametric polynomials.
As a result of this research workable methods for representing the shape of objects with
sculptured surfaces have evolved. In particular, parametric B-splines and their extension to
non-uniform rational forms proved to be the most versatile representations with highly
desirable properties, allowing the designer to manipulate dynamically the shape or add detail

to refine the shape.

Implicit polynomial (algebraic) representation of shape is an alternative to parameiric
representation. Algebraic representations of curves and surfaces allow representation of the
result of intersection, blending and offset operations within the same class of functions
without mathematical approximation! 23, Implicit polynomials also allow the mathematical
representation of intersections and offsets of polynomial parametric curves and surfaces?.
This can be seen from the fact that polynomial parametric curves and surfaces can be
converted to algebraic representations. It has been pointed out, however, in the literature
63 that it is impractical to perform this conversion for some important cases such as, for
example, the biquadratic and bicubic parametric patch cases. This is due to the high degree
of the resulting implicit polynomials and the numerical round-off error in the associated
computations such as determinant expansions. For example, using elimination techniques,
the intersecton of two bicubic parametric patches can, in theory, be represented as an

implicit equation of degree 54 in each of the parametric variables of one patch.

Because of the importance of intersection, blending and offset problems in geometric
modeling applications and the promise of implicit polynomials in providing solutions to
these problems, a number of investigators have suggested the use of algebraics, especially
low order algebraics, in computer aided design. Some of the more important issues in
making the application of algebraic curves and surfaces in modeling possible is the ability to
represent and interrogate portions of these entities in a finite domain directly and the ability
to modify them in a geometrically intuitive manner. For many engineering applications, the
rectangle and the parallelepiped can be empioyed in practice as bounding boxes for shapes

represented by algebraics because they naturally allow the creation of piecewise continuous



geometries in terins of spline functions. A capability to construct piecewise continuous
shapes is needed in the representation of all but the simplest artifacts, Control and
interrogation of such algebraic curve and surface geometries, aithough complex retains a
number of geometrically intuitive features. This idea has been suggested for study by a
number of investigators’ ! 8. The development of this idea involves a change of basis from
the monomial to the tensor product bivariate and trivariate Bernstein basis for curves and
surfaces within a rectangle or a rectangular box, respectively. Piecewise continuous
algebraic curves and surfaces can also be naturally represented by extending the Bernstein to

the B-spline basis.

This idea for the case of curves has recently been explored as a means of shape
creation? and shape interrogation through intersection computationl® 11 by the authors’
Laboratory, This reformulation, (i.e. definition within a window together with the basis
change) not only naturally permits piecewise continuous representation but also provides
geometrical significance to the underlying coefficients, because it allows us to view algebraic
curves as intersections of parametric B-spline surfaces and a plane. This interpretation
allows us to naturally build on the well established theory of modeling with parametric
polynomials and to employ many of the geometric algorithms developed over the last decade
in that area. Algebraic B-spline curves offer some of the advantages of parametric B-spline
curves allowing intuitive manipulation of geometric shape, local control and addition of
detail®.

Encouraged from the useful properties of algebraic B-spline curves, the application of
the above theory to modeling with low order algebraic B-spline patches bounded by
rectangular boxes was investigated and is reported in this work. Summarizing the main
motivations behind the development of a method of sculptured shape representation using

low order algebraic curves and surfaces in the B-spline form are

¢ the degree reduction in the resulting representation, facilitating computationally
complex interrogation problems such as intersections and blends.

e the capability for piecewise continuous shape representation, allowing for
continuity or discontinuity control of curves and surfaces useful in the
representation of all but the simplest artifacts.

e the geometrical significance of the coefficients in this representation, facilitating
intuitive understanding and interactive refinement of the representation.



This work is structured as follows.

Chapter 2 describes a method of representing a finite portion of an algebraic surface
within a rectangular box using Bernstein polynomials. Some of the properties of this

representation useful in geometric modeling applications are also discussed.

Chapter 3 inwoduces a generalization to piecewise continuous algebraic surfaces

defined in terms of B-splines and outlines their properties and possible applications.

Chapter 4 and 5 develop various techniques for shape creation using our formulation for
piecewise continuous algebraic surfaces. Chapter 4 deals with the shape creation problem
using modification of existing primitive shapes. This is achieved by weights modification
and knot refinement allowing change of shape and addition of detail. Chapter 5 develops

direct and iterative least squares techniques to approximate lower dimensional entities with

the piecewise algebraic surfaces.

Chapter 6 describes some interrogation techniques used in the creation and analysis of

the piecewise continuous algebraic surfaces.

Finally, Chapter 7 summarizes the results of this work and indicates possible

applications of the proposed method.



2. Description of an Algebraic Surface Patch within a Rectangular
Box

2.1 Representation

In this section a portion of an algebraic surface f(x,y,z)=0 within a rectangular box
Ry =[a;,a5] x [by,by] x [€q,¢5] is analyzed. This analysis is based on earlier work on
algebraics, such as a method of surface intersection computations’ 1911 and a method on
algebraic curve and surface representation within triangles and tetrahedra! 8, Qur method is

an extension of piecewise continuous algebraic curve representations within rectangles in

terms of B-splines®.

For algebraic surfaces the implicit function f(x,y,z) is a polynomial in the x, y and z
variables, the Cartesian coordinates of a point. Restricting the range of definition of
f(x,y,z)=0 to a rectangular box in the x-y-z space allows reformulation of the normally
monomial representation of f(x,y,z) to a trivariate Bernstein basis which provides
geometrical significance to the resulting coefficients. One of the motivations of this
transformation is similar to Bezier’s reformulaton of Ferguson’s parametric polynomial

tensor product paiches. In this manner, the algebraic surface is expressed as:

M N Q
fMNQ(x,)’,Z) = 2 z E Wiik Bu,;[u(x)] Bj_N[V(Y)] Bk,Q[W(Z)] =0 (1)
=1 j=
where
—al y_bl Z—Cl
ulx) = - v(y) = _bz‘b1 w(z) = P (2)
and B\, Bj N and By o are the Bemnstein-Bezier polynomials of order M, N and Q,
respectively, defined by
Bpy= Dl () Pk k=12,..P 3)
kP =TI (P~k)! ’ -

where 0 <t < 1. The numbers M-1, N-1 and Q-1 are the maximum degrees in each of the
variables x, y and z, respectively. The scalars Wij are the weights of the algebraic surface

and, as we will see, have a similar function to the control points in parametric polynomial

formulations,

As stated earlier, the above formulation is an extension of a method of description of an



algebraic curve f(x,y)=0 portion within a rectangle R, = [a;,a,] x [b,b;] as presented in?
M N
fMN‘(xJ’) = 21 2 Wi B,"M[U(I)] B}',N[V()’)] =0 (4)
=] =
where everything is defined as above.

Algebraic surface patches, expressed as above, can be easily visualized, for example,
using planar contours perpendicular to each of the coordinate axes x, y or z. Each of these
contours is an algebraic curve defined in a rectangle which can be traced using the technigues
developed to compute intersections of algebraic and rational polynomial patches, expressed

as planar algebraic curves in the parametric domain of the patch9 1011

Let us demonstrate this process by an example, using z contours to display a lower
order algebraic surface defined with equation (1). If we want to obtain the surface contour

with z =z, where ¢, € z;, < ¢,, using equation (1) we have

M N O
fMNQ(x*y'zu) = 2 Z ; Wik B, pglu(x)] BjN[V(J’)] Bk,Q[W(Zn)] =0 (3)
=t j=
which can be rewritten as
M N
fMNQ(xay,zn) = Z z foj B,',M{u(x)] Bj,N[V(.}’)] =0 (6)
i=] j=1
with
Q
wx‘-j = ; Wik Bk,Q[w(zn)} )

the new weight coefficients. Equation (6) is identical to equation (4) and represents an
algebraic curve defined in a rectangle. According to the tracing techniques developed in
1011 it is convenient to visualize equation (4) as the intersection of the explicit surface patch
z = fyn(x,¥), where (X,y) € R,, with the plane z =0. The above explicit surface patch can

now be recast in the following equivalent parametric tensor product Bezier patch form:

M N
=1 =
where
Ri;=Ex/y/,w;] 9)

. (ay—a)(i-1)

xi’ = al M—1 (10)
by—b)) (-1
f b+ 627000-D (11)

i Sy o
andi=1,2,.M; j=1,2,..N; and the properties



- k=1

have been used.

An alternative way to think of the surface represented by equation (1), which provides
geometrical significance to the weights wyy is simnilar to the above interpretation of an
algebraic curve. Equation (1) can be visualized as the intersection of the explicit hyperpatch
(volume) w=me(x,y,z), where (x,y,2) € R;, with the hyperplane w=0. The above

explicit hyperpatch can now be recast in the following equivalent parametric triple product

Bezier form:
M N QO
R(u,v,w) Y. Y Ry B pf(w) B; j(v) By (W) (13)
=] =i k=1
where
qu = [ x‘_” yj” zk’, Wuk ] (14)
a four-dimensional vector,
, (ay—ay)i-1)
Y =St — T (13)
, (by=b(-1)
Y =bt—Fg— (16)
, (Cz“cl)(k—l)
G =€y ——m— (17)

Q-1
and i=1,2,.M; j=12,..N; k=12,.Q; and the properties given in equation (12) were

also used.

Equations (13) and (14) now provide a useful interpretation of the coefficients wiy
introduced in equation (1), as the four dimensional coordinate of the control polyhedron
vertices of the parametric hyperpatch (volume) given by equation (13). Equations (15)
through (17) indicate that the x, y and z coordinates of these vertices are uniformnly
distributed on a grid defined by Ry = [a,,a5] x [by,bs] x [¢;,¢,] with spacings proportional to
1/M-1), 1/(N-1) and 1/(Q-1) in each of the x, y and z directions and that the projection of
R(u,v,w), 0 < u,v,w < 1 on the hyperplane w =0 is identical to Ry. Figure 2-1 illustrates
these control vertices {grid points) on a cube with the associated weights for an octant of a

sphere.



Figure 2-1: Control Vertices and Weights for an Octant of a Sphere

(Not 1o Scale)
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It is relatively easy to convert an implicit surface to the Bernstein representation. As an

example, the portion of the general quadric surface
fxyz) =ax? + by? +cz2 + 2hxy + 2gzx + 2z + 2rx + 25y + Uz + d =0 (18)

within our general rectangular box Ry involves weights Wiik given by the following general

equations :
[wind =B AY(A] +¢145 +¢12A)A, T

[WUQ] =8 Al(Al + —T?:-ﬁrdtz + C1C2A3)A2 r

[w;3) = B A((A] + oy + 0a?AA, T (19)
where the matrices B, I', Ay, Ay, A, A, and Ay are given below
10 0 11 1
B=[1050 [=0051

111 00 1
1 3 a,? 11 1

Ay =|1 aj-a; 2a;(a-3)) Ay =|b; (by-by) 0
0 0 (apap? [b)2 2b1(by-by)  (by-by)
d2s b t 2f 07 c 00
ao0do 0 00. 000

As an example of application of Equation (19), the first octant of a sphere with equation
given by x2 + y2 + 22 - 1 = 0 involves weights:
-1-10 -1 -10 001
001 0 01 112
also illustrated in Figure 2-1. As a different example, a complete sphere within a unit cube
[0,11x[0,1]x[0,1] given by (x-1/2)2 + (y-1/2)2 + (2-1/2)2 - 1/4 = 0 involves weights:
12 0 172 0-1/2 0 1/2 0 172
172 0 172 0-12 0 172 0 12
Figures 2-2 and 2-3 illustrate contours of the two algebraic surfaces defined above.

To generalize equation (19), all algebraic surface portions included within an arbitrary

rectangular box can be expressed in the form of equation (1) by a change of basis involving
linear combinations of the coefficients of the monomial form of f(x,y.z) = 0. This conversion
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Figure 2-2: Contours of the First Octant of a Sphere
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Figure 2-3: Contours of a Sphere
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can be reduced to matrix multiplications3. The required transformation matrices have
elements which are rational numbers depending only on the degree, and, therefore, can be
coded in exact arithmetic!®. Accurate conversion of these rational matrices to floating point
matrices is possible by means of a single division for each element. Sophisticated methods
to enhance the precision of inner product computation, during basis transformation by matrix
multiplication, are available and should be cmploycdlz. The surface described by equation
(1) is of degree M-1 in x, N-1 in y and Q-1 in z, or at most of degree M+N+Q-3 in x, y and z.
It is not, however, the most general algebraic surface of degree M+N+Q-3 in x, y and z. It
involves only MNQ-1 degrees of freedom because multiples of the weights represent the

same surface.

One potential advantage of the Bernstein representation with respect to the power basis
representation is increased numerical stability. The condition numbers of simple real roots of
a polynomial in an interval have recently been studied theoretically and were found to be
smaller in the Bernstein than in the power basis!3. In addition, Bernstein subdivision and
degree elevation procedures decrease root conditioning. The evaluation of Bernstein
polynomials using de Casteljau’s algorithm has an error bound linear in the degree even
though the arithmetic operations grow quadratically with the degree. This error bound is also
linear in the maximum of the polynomial coefficients in the Bernstein basis, a notable
advantage. Finally, the evaluation of a polynomial is less sensitive to coefficient
perturbations in the Bernstein than in the power basis. However, explicit conversion from
the power to the Bernstein basis and intermediate polynomial arithmetic in the power basis
used in early algorithms in ﬂoatirig point are expected to decrease the benefits inherent to this

basis. Practically this means that processing algorithms should adhere to the Bernstein basis
14 10 11

2.2 Shape Control
Next we present some properties of algebraic surfaces described by equation (1) which

should be useful in geometric modeling applications. These properties are similar to the
properties of algebraic curves within rectangles®. Most of these propertics refer to the faces

and the edges of the rectangular box and their intersections with the algebraic surface.

If a corner of the box has zero weight, the surface passes through that comer. If the
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weights corresponding to an edge of the box are all zero, the surface interpolates that edge. If

the weights corresponding to a face of the box are all zero, the surface interpolates that face.

If all the weights of the box are strictly positive or negative no portion of the surface
exists in Ry. If all weights are strictly positive or negative along a face of the box, the
surface has no common point with that face. If all weights are strictly positive or negative

along an edge of the box, the surface has no common point with that edge.

If the weights along an edge of the rectangular box have only one sign variation, then
the surface intersects that edge at most once. If the weights along a face of the box can be
split into two continuous regions with opposite signs, then the surface intersects that face in
at most one contour. A simple proof of this fact can be obtained using lines in the face
parallel to one of the edges. For each of these lines there will be at most one sign variation in

the corresponding weights, and at most one intersection point with the algebraic curve.

Another important property for local control of the surface is the following. If
f(xi’,yj’,zk’) is positive (negative), then increasing (decreasing) the corresponding weight
w;x will repel the surface away from (x;’.y;".z’) and vice versa decreasing (increasing) Wijk
will attract the surface towards (x;".y;’,z’). If all weights on a face of the box increase or
decrease monotonically along one of the coordinate directions, then straight lines on the face,
parallel to these directions, will intersect the surface at most once. If all weights increase or
decrease monotonically along one of the coordinate directions, then straight lines parallel to
the corresponding direction intersect the surface at most once. The above properties can also

be employed in efficiently tracing algebraic surfaces.

In order to interpolate box corner points with the surface, we have already seen that the
corner weight should be zero. The tangent plane to the surface and the normal to the surface
at these corner points can then be specified very easily, using the three adjacent weights to

the comer weight. The normal vector to an algebraic surface is given by

_ Unlpt)
N fx2 + fyz + fzz

The normal vector in an interpolated corner point, for example wy; has the direction of the

20)

vector i = [Wy11, Wiz, Wypol- If one of these weights is zero, the edge corresponding to that
weight is tangent to the surface at the corner point. If two of these weights are zero, the face
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where the weights lie is tangent to the surface at the corner point. If al] these weights are

zero, the normal vector is not uniquely defined and we have a singularity of the surface at the

corner point.

Piecewise continuous algebraic surface portions within rectangular boxes can be
constructed by attaching a new rectangular box to a face of the original box and imposing the
necessary continuity conditions on the underlying weights. It is a simple exercise to construct

these continuity conditions.
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3. Piecewise Continuous Algebraic Surfaces within a Rectangular Box

In this chapter we extend the definition of algebraic surface portions described by
equation (1) to more general piecewise continuous algebraic surface portions within a
rectangular box Ry =[ay,ay] x [b,bs] x [¢,65]. We do this using the facilities of the

non-uniform B-spline basis. Let

X=[
Y =y} Y20 Ynan ] @b
Z=]

be three knot vectors involving m+M, n+N and g+Q knots, respectively, chosen so that

ay i=12. M

xl = x'i_M.‘_l i = M+1, M+2,... m (22)
ay 1=m+l,m+2,.m+M
b, j=12,_.N

¥i= y‘j-N...] j=N+1,N+2,..n (23)
b, j=n+1,n+2,.. n+N

Zy.qel K=Q+1,Q+2..q (24)

) k=12,.0
Zk =
Cs k=q+l,g+2,..q+Q

where Xpg, 1 > Xpps Xpa ™ Xmo Xigg 2 Xp i = M+1,M+2,..m-1 and x; is at most of multiplicity
M, and similarly for the other directions. Equation (25) defines a piecewise continuous

algebraic surface in terms of B-splines

m a q
fMNQmﬂq(x,)’,Z) = Z Jg ; wfjk BIM(x) Dj,N(y) Ek,Q(z) ={) (25)

=1

where B; M(x), Dj .N(Y) and Ek'Q(z) are the non-uniform B-spline bases of order M, N and Q
defined on the knot vectors X, Y and Z. These can be evaluated using de Boor’s recursion

15 and simplify to equation (1) when m=M, n=N and q=Q so that no interior knots exist!6,

Similarly to equation (1), the surface given by equation (25) can be easily visualized
using contouring by planes orthogonal to the coordinate axes. Each of the contours is a
piecewise continuous algebraic curve in a rectangle expressed in terms of B-splines. Such
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curves also arise naturally from intersections of rational parametric B-spline patches with

planes. These contours can, therefore, be traced using the techniques presented inl¥ and!!.

As in Chapter 2, it is advantageous to view the surface defined by equation (25) as the
intersection of the hyperpatch (volume) defined by w = fWQmHQ(x,y,z) with the hyperplane
w =0 where (x,y,2) € R3. This explicit surface can be recast in a parametric hyperpatch
form. To achieve this, we define x;", ;" and 7" for i=1,2,...m, j=1,2,..n and k=1,2,...q as the
expansion coefficients of the functions x, y and z in [a,,3,], [by,bs] and [c,,c,] respectively

in terms of the corresponding B-splines

x= g X" By y =§ yj" Diyy z= g 7' E o (26)
Then these coefficients can be easily obtained using a subdivision algorithm!7. To do this
for the x direction, for example, we define the starting knot vector

X*=[aya,..a1,498;..05 ] 2D
where the a;’s and a,’s are repeated M times each. The comresponding B-spline basis is now

the Bernstein basis of order M (degree M-1) on [a,,a,] given by equation (3). Using

M
xX= 2 xl" B‘M(x) (28)

which can be obtained from equations (8) to (12), it is now easy to see how starting from the
initial representation given by (27) and (28), the final representation given by (21) and (26) is
obtained by means of a subdivision algorithm?7.

Alternatively, x;", y;* and z,~ can be computed as the nodes!® associated with the knot

vectors given in equation {(21) using
1 +M-1
X't =— X i=12,..m (29)
-1 &4

and similarly for the other directions. These formulas degenerate to equations (15), (16) and
(17) when m=M, n=N and q =Q. From the above discussion, we can recast the explicit
volume w = fypg™™(x.y,2), (x,y.z) € Rj in the following equivalent parametric tensor

product non-uniform B-spline volume patch form:

m n g
P(u,y.w) = P.. B, . (u) D; (V) E; 5(W) (€10)]
; :Z; Z[ ik Bi (0 Dj (V) Ep
where
P =73, 2% Wi | G1)

a four-dimensional vector and (u,v,w) = (x,y,z) € R3. Equations (30) and (31) now provide
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a useful interpretation of the coefficients Wiik introduced in equation (25) as the w
coordinates or the weights of the control polyhedron vertices of the parametric hyperpatch
(volume) given in equation (30). Thus the weights may be associated with grid points of the
rectangular box which are created using the nodes of the B-spline functions in each of the
parametric directions. The geomerric interpretation outlined in the previous chapter for the

Bemstein basis algebraic surfaces in a rectangular box extends to this case as well.

Examples of algebraic B-spline surfaces are given in Figures 3-1 and 3-2. Figure 3-1
illustrates contours of a piecewise continuous algebraic surface by planes orthogonal to the x
axis. The degree of the surface is 2 in each principal direction in the cube [0,1] x [0,1] x [0,1]
with a Z knot vector involving a simple interior knot at 0.5, and Y and X knot vectors
without interior knots, and weights given by the matrices

000-1 000-1 -1-1-1-2
[wljk]=|:1110:| [W2jk1=|:1110] [ w3 ]= [000—1:{
1110 1110 1110
The resulting surface involves a ruled segment followed by a curved segment with tangent
continuity. The ruled segment is parallel to the z axis and slopes upward in the x direction.
The effect of changing weights w4, W54 and ws 4 by subtracting the number 4 is
illustrated in Figure 3-2. This surface still involves the same ruled segment, but now exhibits
a clear inflexion and a much steeper rise from the ruled part, while preserving tangent

continuity as before.

As we have seen, piecewise algebraic surfaces given by equation (25), like piecewise
parametric surfaces, have the advantages of easy representation of various degrees of
continuity, local control, and efficient addition of detail which are inherent in the B-spline
formulation!6 18 while retaining the good properties of the Bernstein basis described in the
previous section. In fact, due to the generality of equation (25), we have used the B-spline

representation in our implementations!© 11,

It is worth noting a few additional properties of equation (25) of interest in geometric
modeling applications. The representation given by (25) is invariant under translation,
rotation, reflection and uniform scaling because the shape of the surface is related to the
shape of the control polyhedron of the hyperpatch and the relative proportions of Ry. These
properties are useful in design and graphical visualizations. In addition, because equation
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(25) describes a shape enclosed within a rectangular box, it allows for the efficient
implementation of interference preprocessing algm'ithms19 esseniial in complex engineering
environments. Equation (25) also separates R into regions where fWanq(x,y,z) is either
positive or negative, so that it allows the representation of volumes using Boolean
combinations of half-spaces in the manner of Constructive Solid Geometry. Finally, this
representation of volumes using (25) can be converted naturally to the octree method of

representing volumes using subdiviston!® and the convexity properties of B-splines.
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Figure 3-1: Piecewise Continuous Algebraic Surface - One Internal Knot
in the Z Direction
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Figure 3-2: Piecewise Continuous Algebraic Surface - One Internal Knot
in the Z Direction- Inflection Point




22

4. Shape Creation I - Manipulation of Primitives

Chapters 4 and 5 concentrate on various techniques to create primitive free-form
(sculptured) shape using our piecewise continuous algebraic curve and surface formulations.
The actual creation of complex sculptured shapes with algebraic curves and surfaces has
received very little attention in the literature3. In this work we concentrate primarily on two

techniques for shape creation.
» Manipulation of existing primitives

» Approximate least squares fit of lower dimensional entities such as points,
control curves ete.

4.1 Manipulation of Existing Primitives

The first idea is to exploit the geometric properties of the B-spline formulation in a
rectangular box, such as those presented in Chapters 2 and 3 and for the case of curves in
reference’. According to this idea we create primitives, starting with pieces of well known
surfaces such as quadrics (ellipsoids, cylinders, cones etc.) expressed in the B-spline
formulation. This is followed by manipulation of primitive shapes through such operations as
non-uniform scaling, knot insertion!” or degree elevation?® to increase the degrees of
freedom and tweaking of weights to change the shape. In this manner, we may achieve

desired shape features and certain geometric constraints (tangencies etc.).

An interactive algebraic surface editor has been developed in our Laboratory for this
purpose2!. In this editor, the designer can start with a well known quadric or with an already
designed surface and then apply some of the above operations to increase the degrees of
freedom and alter the shape of the surface locally by weight modification, while maintaining

continuity in certain portions of the surface.

Some examples of algebraic surface manipulation operations are presented next.

4.1.1 Box Non-Uniform Scaling

Scaling of the rectangular box containing the algebraic surface, scales the surface
accordingly, provided the weights are not changed. Thus the sphere given in Figure 2-3
defined inside the box [0,1]x[0,1]x(0,1], becomes an ellipsoid with circular y-z cross-sections
inside the box {0,2]x[0,1]x[0,1] (Figure 4-1). An advantage of the present formulation is that
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a single algebraic Bezier surface in a box can compactly model a complete ellipsoid, or
sphere or even a cube (Figure 4-2). As a result, the present algebraic surface formulation in a
control box is well suited for use in the framework of Constructive Solid Geometry.
Algebraic surfaces in control boxes naturally create finite primitive volumes, which can be
procedurally combined in terms of set operators (union, intersection and difference) to create

more complex shapes.

4.1.2 Weight Modification

One important technique in modifying shape is changing the weights associated with
each of the grid points of the piecewise continuous algebraic surface representation. In
Chapter 3 we show an example of the effect of weight modification on a surface with an
additional knot in the z direction. In that example (Figures 3-1, 3-2) by changing a few of
the weights, we performed some local changes to the surface, we introduced an inflection,

while we kept piecewise continuity and a ruled portion on the surface.

An additonal example can be seen in Figures 4-3, 4-4 and 4-5. Here, we start with an
octant of a sphere, with weights as defined in Chapter 2. First we modify weights w33 and
wo33 from 1.0 to 0.114 and weight w445 from 2.0 to 1.03 to pull the sphere towards the
vertex with coordinates (0,1,1) and edge defined by vertices with coordinates (0,1,1) and
(1,1,1). The result is seen in Figure 4-4. Alternatively we modify weights w33 and ws33
from 1.0 to 2.0, weights w5, and wy,, from -1.0 to 1.03 and weight w34, from 0.0 to 1.03 10
push the sphere away from vertex with coordinates (0,1,1) and edge defined by vertices with
coordinates (0,1,1) and (1,1,1). The result is seen in Figure 4-5. In both these operations, we
decided not to affect the tangents of the surface in the opposite faces of the control box. The
above example illustrates some of the geometric properties of the present formulation as

presented in Chapter 2.

Using some of the interrogation techniques developed simultaneously to examine
piecewise algebraic surfaces, such as contouring and curvature maps, the designer can

interactively evaluate the changes he makes to improve his design.
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Figure 4-1: Contours of a Complete Ellipsoid in Box [0,2]x[0,1]x[0,1]




25

Figure 4-2: Contours of a Cube in Box [0,1]x{0,1]x[0,1]
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Figure 4-3: Contours of an Octant of a Sphere
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Figure 4-4: Contours of a "Pulled” Octant of a Sphere
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4.1.3 Knot Addition and Degree Elevation

An important technique, allowing incremental addition of detail and local shape
modification, is the introduction of additional knots in some or all coordinate directions of
the control box. This knot addition can be performed using the Oslo Algorithm!8 17 or
Boehm’s algorithm?2, Introducing new knots increases the degrees of freedom (weights) of
the underlying piecewise surface without actually changing the surface. Modifying the new
weights (degrees of freedom), the designer can perform local changes to the surface, while

keeping the required degree of continuity between the various segments.

An example of the use of knot addition to locally refine a shape was presented in
Chapter 3 and on Figures 3-1 and 3-2, where an initially flat piecewise continuous algebraic
surface was used, a knot was added in one of the directions and the weights were modified to

affect only a portion of the surface, while the other portion remained ruled.

An additional interactive refinement capability is degree elevation?% of the algcbraic
surface, also allowing increase of the degrees of freedom of the surface. However, this
technique increases the complexity of the surface and the complexity of the various
interrogation and analysis techniques unnecessarily and is not recommended when it leads to

degrees beyond 3 in each direction.

The next chapter presents the second method of shape creation, using least squares

techniques to approximately fit algebraic curves and surfaces to lower dimensional entities.
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S. Shape Creation II - Least Squares Approximation

One idea to create primitive shapes with  algebraics involves
approximation/interpolation of lower dimensionality entities. For example algebraic B-spline
curves may be defined from point data, while algebraic B-spline surfaces may be defined
from cross-sectional curves on planes parallel to the control box faces. In order to perform
these types of approximations least squares techniques were employed. A description of

some of these techniques will be presented next.

5.1 Related Work

There appears to be relatively little written about fitting algebraic curves to points. A
fairly thorough search in23 turned up only a few treatments of least-squares fitting of
algebraic curves. Most of these references also treat specific problems (circular, conic fit)
and not the general problem which is not as well understood. In addition, only reference
23 was identified as dealing with least-squares fitting of non-planar algebraic surfaces. By
comparison least-squares fitting of parametric polynomial curves and surfaces is wreated in a

number of papers and textbooks, for example?4,

Qur work comes to fill part of this significant gap in the literature for the case of fitting
of algebraic curves and surfaces. The least-squares technique of23, a technique based on
Householder transformations, as well as a more general technique based on singular value
decomposition were implemented to analyze the least squares problem for the case of the
piecewise continuous algebraic curves and surfaces of the proposed formulation. The
technique based on singular value decomposition was found to be most useful, since it
provides more intuition about the least-squares type of solution. We explain this technique in
more detail in the following sections. The techniques implemented in this report are of

general interest to other scientific domains where curve and surface fitting are needed.

5.2 Problem Formulation

The problem is fitting a general piecewise algebraic curve or surface to m points in
two-dimensional or three-dimensional space. The problem formulation will be presented next
for algebraic surfaces.

In general, given a sample consisting of m points in R3, we wish to find a surface of the
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form Z(f) ¢ R> ‘consisting of the zeros of the function f(x,y,z) = 0, which comes close to
minimize a certain sample-to-surface distance. The function f is to be drawn from a given set

Q of functons, which are linearly independent (they form a basis).

The basis functions we use here are the B-spline basis functions. For piecewise
algebraic surfaces defined in a rectangular box, the basis functons are the triple products b,

of the B-spline functions in each of the coordinate directions given by

where Bi,M(x)’ Dj_N(y) and Ek’Q(z), i=1,..m, j=1,...n, k=1,...q, are the non-uniform B-spline

bases of order M, N and Q defined on the knot vectors X, Y and Z given in equation (21) and
I=i+(§-1)m+(k-1)mn

with 1 = 1,..mnq. As an example, for a Bezier algebraic curve in a rectangle of degree 2 in

each coordinate direction, there are 9 basis functions by, while for a Bezier algebraic surface

in a rectangle of degree 2 in each coordinate direction, there are 27 basis functions by to use

in the fit. The addition of knots rapidly increases the number of basis functions.

For piecewise algebraic surfaces, our goal is to determine weights w;;= wy such that

mnq

fxy.z) = ;’r w, bx,y,2) =0 (33)

comes close to minimize a certain function of the distance of the sample points (xp,yp,zp)
from the surface f(x,y,z) = 0. To ease notation from now on, we will set = mnq and we will

drop the ~ as well.

If we are given m points Rp = (xp,yp,zp) in R3 to be firted using the basis functions
by(x,y,z), we can define the rectangular matrix A which will map the basis functions at the m
points. Thus A is the mXxn matrix (m > n, usually m >> n), whose ij-th element is

a;j = by(X;Yp2y)

Equation (33) can then be written in matrix form as
Aw=0 (34)

where w is the nx1 column vector of the weights.

Problem Aw = (0 is not a standard least squares problem, since the right hand side vector
is zero and a trivial exact solution to the problem is w = [(}]. This homogeneous problem has

received very litde attendon in the literature, since for standard least squares problems Aw =
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b where the objective is to minimize the overall distance vector |lb - Aw]||, the homogeneous
part of the solution is always set to zero?4. In this problem, we want to obtain a non-trivial
solution to the homogeneous equation {34), which minimizes the magnitude of the residual

vector [[Awl]].

We will present three general and formally equivalent methods for solving equation
(34). The first method uses singular value decomposition and was found to provide
substantial intuiticn in the solution of equation (34). The second method uses the normal
equations of the problem, Cholesky decomposition and determinant evaluations to obtain the
solution of equation (34). The second method is faster?3, but less stable and provides little
intuition in the solution. A variation of the second method, which will be also presented,
uses Householder triangularization of matrix A to solve the least squares problem without

reverting to the normal equations of matrix A and is more stable.

Before moving to the presentation of each of these techniques, the next section
describes some distance metrics needed in algebraic least squares problems to evaluate the

quality of the fit.

5.3 Distance Metrics
The goodness of fit is usually determined by the length of the m-vector of "distances” of
the m points from the approximating surface. There are different definitions of "distance" of

a point from an algebraic surface, which are customarily used in least squares problems.

5.3.1 Geometric Distance

Geometric distance of a point p from a surface S is the distance from p to the nearest
point of S i.e. the minimum, over all points p' of S, of the Euclidean distance from p to p’.
Unfortunately geometric distance is neither computationally nor algebraically convenient.

Thus it is customary to use distance metrics approximating geometric distance?3 as identified

in Secdons 5.3.2 and 5.3.3.
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5.3.2 Algebraic Distance

The most common distance metric used for the distance from a point p to a surface Z(f)
is the value of f at the point p. Since Z(f) = Z(cf) for ¢ # 0 (f(x,y,z) = cxf(x,y,2) = 0), f is
usually normalized to make this value meaningful, typically by scaling it so as to setto a
constant (unity usually) some function of the coefficients (weights). For conics, for example,
a quadratic function of the coefficients is usually set to unity (quadratic normalization).
Distance computed in this manner is called algebraic distance and is computed by evaluating
a fixed representative polynomial cf, chosen independently of the point p. Least squares
methods using such a distance metric are called direct methods since they involve no

iteration with respect to distance evaluation.

The quality of fit may vary substantially between different normalizations as indicated
in23, since different normalizations introduce different bias to the approximating surface. As
an example from conic curves defined by

Ax2 +Bxy + Cy2+Dx +Ey+F=0
examples of possible normalizations are of the form

A2+B2+C2+D2+E24F2=1 or
F=1 or
A2+ B22 +C2=2 (forcircular fits)

Some of these normalizations have fitting singularities. For example if we try to fit a conic
using F=1 to points requiring F = {}, we will be unable to get a good solution. So conics

passing through the origin may not be succesfully fitted with such a normalization.

5.3.3 Non-Algebraic Distance
For the algebraic distance, the normalization technique does not depend on the point
Rp. However, in order to approximate geometric distance better, the normalization needs to

actually depend on Rp.

In this respect, a first order approximate expression for the shortest distance from any
point close to an implicit surface to the surface itself (not in the neighborhood of singularities

of f) is

i
i = 1 (35)

where Vf is the gradient vector of the surface. A proof can be based on a Taylor’s expansion
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of the implicit equation about point R, see!l,

Thus in this case, the surface Z(f) can be normalized using IVfl and the distance of the
surface from each point can be determined to enable selection of the minimum distance
solution. Since this normalization is a function of each of the fitted points Rp, it is called a
non-algebraic distance, one though, that is more computationally tractable than geometric
distance. This normalization has the beneficial property that it is insensitive to scaling of the

surface function f and is as invariant as geometric distance?3,

One disadvantage of this metric, is that it cannot be used directly in a linear least
squares fit, since it requires knowledge of the fitted surface and gives rise to a nonlinear
least squares problem. One computes an algebraic fit using a direct method, and then

iteratively weighs the algebraic distance from each sample point R, to Z(f) by — f(—ll)(,.)’
| |

where {1 is the surface found in the previous iteration. This weighing can be performed by
scaling the rows of matrix A using the gradient information and then solving the least squares
problem with the new A matrix. To start the iteration, unit weights can be used or for faster
convergence, a direct method can be applied with one of the other distance metrics to obtain

a better initial approximation.

5.3.4 Distance Metrics in Present Implementation
In the least squares techniques we studied, we selected to use both algebraic (direct) and

non-algebraic distance (iterative).

For the algebraic distance in the direct least squares problem, most of the quadratic
normalizations presented in23 are not applicable to the proposed general least squares fit. In
the current implementation two types of normalizations were used. For the implementation of
least squares using normal equations or Householder triangularization, the coefficient of one
of the basis functions by was set to 1 and the other coefficients were scaled accordingly. In
this case, there is a singularity, when the comresponding coefficient is actually approximately
zero and the results are not expected to be accurate. However, since the coefficients of the
algebraic surface in a rectangular box have geometrical significance, it is relatively easy for
the designer to select a weight (coefficient) which is non-zero, based on the desired surface

or curve geometry. For the implementation of least squares using singular value
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decomposition, the sum of the squares of the resulting weights (coefficients) of the fit is set

equal to 1. This normalization has no singularities.

For the iterative least squares problem (leading to better approximation to the geometric
distance between the data points and the fit), the non-algebraic distance was used as defined
above, where the algebraic distance from each sample point is weighed using the magnitude
of the gradient vectors on the points close to the surface. In addition, the non-algebraic
distance was also used as a means to select the more desirable solution vector from a series
of feasible solution vectors in the singular value decomposition method as will be explained
in the next section. In this case the solution vector minimizing the total non-algebraic

distance was selected as the problem solution.

5.4 Least Squares Solution by Singular Value Decomposition
A general technique to solve the least squares problem in equation (34) is singular value

decomposition. Applying singular value decomposition to the mxn matrix A we obtain
S
A=U [0 ] VT (36)

where U and V are mxm and nxn orthonormal matrices (i.e. UUT = I, the unit matrix and
each column u; of U has [yl =1 and similarly for V), S is an nxn diagonal matrix with
positive non-increasing diagonal entries (singular values) starting from the upper left corner,
0 is a (m-n)xn null matrix and || || denotes the Euclidean norm. A proof of the existence of
such a transformation, its properties and an algorithm to obtain the transformation can be

found in?4. Some of the most important relevant properties of this decomposition are
e The singular values (s;;) of matrix A are the square roots of the cigenvalues of
the positive semi-definite nxn symmetric matrix ATA (normal matrix).

o Since matrix ATA and matrix A have the same rank, if A has rank k < n, then
there are k non-zero eigenvalues of ATA and exactly k non-zero singular values.

¢ The columns of matrix V (right hand singular vectors) are the eigenvectors of
matrix ATA, while the columns of matrix U (left hand singular vectors) are the
eigenvectors of matrix AAT,

o Let 5y and s, respectively, denote the largest and smallest singular values of
mxn matrix A, then
sy S [lAw]| < s provided [jw]| =1
which is the normalization used in our work. Thus we obtain the lower and
upper bound for the residual of all possible fits to the m points.



36

Another important property, identifying the perturbation properties of singular values,
can be drawn from an equivalent property of the perturbation properties of eigenvalues.

If A is 2 mxn matrix, k is an integer 1 <k < m and B is

the (m-1)xn matrix resulting from the deletion of the kth row of A
(ignoring one of the sample points), then the ordered singular values
b, of B interlace with those singular values a; of A as follows

This last property provides an indication of the effect on the singular values of increasing the

number m of points in the fit. The singular values do not normally change significantly and

their direction of increase or decrease is predictable.

After the singular value decomposition (36), equation (34) can be replaced by the

equivalent equation (neglecting the zero rows in the decomposition)

SVTw=UT0=0 (37)
which can be written as

Sp=0 | (38)
with

p=Viw (3%9)
and

w=Vp (40)

Three cases need to be examined for the solution of equations (38) and (40), depending on
the rank of matrix A.

5.4.1 Rank(A) =n-1

In this case there is an exact fit, since there is a unique non-trivial solution to problem
(38). Matrix § has exactly n-1 non-zero singular values and s, = 0. The exact solution of
(38) (unit vector) in this case is pT = [0, ...,0,1], and the weight vector isw=Vp=yv,

where v, is the nth column of matrix V, the nth right hand singular vector.

This case is an important case since it provides a direct and, as we also found, accurate
method to obtain the implicit equation of a parametric curve or surface, provided of course
such an implicit equation exists. An alternate method to compute implicit equations of

parametric polynomial curves or surfaces can be found ind 6,
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5.4.2 Rank(A) < n-1

In this case there is still a non-trivial exact fit, but this is not unique. The problem is
overdetermined, since the approximating space of functions Q spanned by the basis
functions, overdetermines the shape of the input points to be fitted. If rank(A) =r, then § has

n-r zero singular values and the general solution in this case is

pr={0,... 0,800 -...3,] and w= ‘il a; v; (41)
The weights are a linear combination of the n—rl-lrz:st columns of matrix V of right hand
singular vectors. The coefficients a; are not unique, and there is no single solution. This is a
difficult case to treat and it is preferable to reduce the order of the approximating implicit

polynomial.

543 Rank(A)=n
In this case (representing the majority of cases) there is no exact fit, since equation (38)
has no non-trivial solution and only a fit in the true least squares sense can be obtained. If
we select one of the elements of vector p to be non-zero (usually unity), the fitting error p
(magnitude of residual vector) becomes
SI0,....0;....0T=[0,....5,...,0/7
and p =s; and the least squares solution vector is w = v;, the ith column of matrix V.

As a result, the singular values are the residual errors if the corresponding right hand
singular vectors are used for the fit. If we select the smallest singular value s, and the
associated vector, then the fitting error is minimized and the last right hand singular vector is

our least squares solution.

An alternative proof of this observation is the following?®. If s; is a singular value of A,
then A Vi = 85 U and since Ilujll =1 we get J]A vaI =5=p and 5 is the approximation error
when the jth column of V is used for the fit weights.

As can be seen in all three cases, the solution of the fitting problem is obtained directly
from the singular value decomposition of matrix A and particularly from matrix V, the

matrix of right hand singular vectors.
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5.5 Implementation of Singular Value Decomposition Method

Let us present some results from least squares fitting of algebraic curves and surfaces to
indicate some of the principles discussed above. First we examine exact fits. If we fit an
algebraic curve of order 2 in the x and y direction, to points on a conic curve the fit is exact
and the conic curve is recovered. As an example Figure 5-1 presents the fitted curve (8
degrees of freedom) over 10 points which lie on the first quarter of a circle. The fitted curve
provides the implicit equation of a circle very accurately. Similarly if we fit an algebraic
surface of order 2 in each of the parameter directions to points on a quadric surface the fit is
exact and the quadric surface is recovered. As an example Figure 5-2 presents the fitted
surface (26 degrees of freedom) over 45 points which lie on the first octant of an ellipsoid.

The fitted surface provides the implicit equation of an ellipsoid very accurately.

The existence of the exact fit provides a direct and accurate method to obtain the
implicit equation of a parametric curve or surface, provided of course such an implicit
equation exists. As an example Figure 5-3 presents the implicit curve (15 degrees of
freedom) obtained from fitting of 17 points obtained from a planar fourth order parametric
(cubic) Bezier curve with control points (0.0, 0.0}, (0.5, 0.0}, (0.0, 0.5) and (1.0, 1.0).

The second case examined involves a matrix A with rank less than n-1. In this case as
was mentioned above there is still a non-trivial exact fit, but this is not unique. The problem
is overdetermined, since the approximating space of functions Q spanned by the basis
functions, overdetermines the shape of the input points to be fitted. As an example, an
algebraic curve of degree 2 in each of the coordinate directions was fitted to points from the
parabola y = 0.9x2. Because the degree of y in the parabola is 1, the algebraic curve with
degree 2 in the y direction overdetermines the shape of the input curve and the resulting rank
of matrix A is 7 (n=9). As a result two singular values are zero and there is no unique exact
fit. The two right hand singular vector solutions are presented in Figures 5-4 and 5-5 where
21 points were used for the fit. Figure 5-4 presents the expected parabolic solution. Figure
5-5 presents a reducible curve composed of a parabola and a line, i.e. the fit of implicit
equation (y-0.9x2)(y-0.4264)=0, which is also a second degree algebraic equation. A linear
combination of these two solutions is also a possible exact solution to the fitting problem, i.e.
any line parallel to the x axis and the parabola are possible exact fits to the points used for the
fit. This example illustrates the difficulty of selecting the best solution from the possible
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Figure 5-1: Exact Fit of Algebraic Curve to Circle Points
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Figure 5-2: Exact Fit of Algebraic Surface to Ellipsoid Points
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Figure 5-3: Exact Fit of Algebraic Curve to Parametric Bezier Curve Points

Figure 5-4: First Exact Fit of Algebraic Curve to Parabola Points
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exact solutions in an overdetermined fitting problem.

Figure 5-5: Second Exact Fit of Algebraic Curve to Parabola Points

The third and most important case is when the rank of A is n and there is no exact fit but
only a fit in the true least squares sense. In this case singular value decomposition provides
us with all the necessary information to efficiently determine the best solution. As was
already explained above the singular values are the residual errors if the corresponding right
hand singular vectors are used for the fit. If we select the smallest singular value s, and the
associated vector, then the fitting error j|Aw]{ is minimized and the last right hand singular

vector 1 our least squares solution.

The main advantage of the singular value decomposition method is that it provides a
number of feasible solutions with known residuals and not just the minimum length solution.
In the majority of the examples examined a number of singular values are small. In such
cases, selecting the smallest singular value for the fit may not be the best solution, since the

resulting curve or surface might have undesirable features as explained below.

As an example, if s, and s, | are both small and of the same order of magnitude, the
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"best’ solution might be the vector v, or the vector v, or even a linear combination of v,
and v, (a vector in the space spanned by orthonormal vectors v, and v, ;). If there are
more small singular vectors, the problem becomes even more complex since the space of
reasonable solutions grows. An additional important consideration is that the singular values
are the algebraic distance errors of each of these solutions and do not necessarily
approximate accurately the geometric distance between the fitted curve or surface and the

points, as will be shown below.

A couple of examples will be presented next to illustrate some of these features. An
algebraic Bezier curve of degree 2 in each coordinate direction is used to fit points obtained
from a planar third order parametric B-spline curve with knot vector ((0,0,0,0.5,1,1,1] and
control points (0.0,0.2), (0.4,0.1), (0.7,0.7) and (1.0,1.0). Table 5-1 presents the 9 singular
values of the resulting matrix A in decreasing order if we use 21, 31 and 41 points for the fit.
The singular vectors corresponding to each singular value in all three cases are very similar.
As can be seen, there are several singular values which are small and of the same order of
magnitude. This means that several singular vectors approximate the points accurately since
their algebraic distance residual is small.

Table 5-1: Singular Values from Fit of Parametric B-Spline Curve

Singular Value 21 points 31 points 41 points
9 0.0019 0.0023 0.0026
8 0.0065 0.0077 0.0087
7 0.0085 0.0101 0.0114
6 0.0501 0.0582 0.0652
5 0.1523 0.1784 0.2010
4 0.4304 0.5057 0.5710
3 0.8566 1.0160 1.1530
2 1.4940 1.7870 2.0370
1 1.7260 2.0730 2.3720

Figures 5-6, 5-7 and 5-8 present the singular vector solutions for the ninth, eighth and
seventh singular values respectively. The points used in the fit are also shown in the Figures
using crosses. In this case selecting the solution with the smallest singular value, we obtain a
solution with two extraneous segments in the unit rectangle which might be undesirable and
requires further processing such as subdivision to eliminate extraneous components. The
second smallest singular value gives a more disappointing solution with two segments which
do not represent the topology correctly. The third smallest singular value gives a solution
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which has no extraneous segments in the domain considered and approximates the initial
points fairly well. It may seem surprising that the eighth solution vector has smaller residual
error than the seventh solution vector. However this error is the algebraic distance error
(value of the implicit function at the fitting point) and does not approximate geometric
distance correctly. Table 5-2 presents the non-algebraic distance error (by dividing the
algebraic error of each point by the gradient vector magnitude at the point) for the four
smallest error solutions. As can be seen, the eighth solution vector is not as good any more
and the seventh solution vector is very close in accuracy to the ninth solution vector.

Table 5-2: Algebraic Distance vs Non-Algebraic Distance Error
from Fit of Parametric B-Spline Curve

Singular Vector Algebraic Distance Non-Algebraic Distance
9 0.0023 0.0125
8 0.0077 0.0921
7 0.0101 0.0157
6 0.0582 0.1751

]

Figure 5-6: Ninth Singular Vector Solution to Fit of B-spline Curve Points
Residual Error = 0.0023 (Algebraic Distance)

The second example from algebraic surfaces illustrates some of the features indicated
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Figure 5-7: Eighth Singular Vector Solution to Fit of B-spline Curve Points
Residual Error = 0.0077 (Algebraic Distance)

above for the case of surfaces. In this example an algebraic Bezier surface of degree two in
each of the coordinate directions is used to fit 121 points obtained from a doubly curved
integral biquadratic Bezier parametric surface in the box [0,2]x[0,1]x[0,1] with control points
Pyj = [(0.0 0.0 0.7), (0.0 0.1 0.1), (0.0 0.9 0.031, P5; =[ (1.0 0.0 1.0, (1.0 0.3 0.3), (1.0 1.0
0.7)] and P3; = [ (2.0 0.0 0.6), (2.0 0.1 0.1), (2.0 0.9 0.0)]. Matrix A in this case has 27
singular values. Table 5-3 presents a comparison of the six smallest and the largest singular
values (algebraic distance error) of this problem with the comesponding non-algebraic
distance errors. As can be seen in this case also there are a number of solutions with small
singular values and, therefore, selection of the smallest singular value for the solution may
not be appropriate. As the non-algebraic distance errors indicate, the second smallest singular
value solution (26th singular vector) results in the smallest non-algebraic distance error and
should therefore be the one selected. Figure 5-9 presents this solution together with the
points used in the fit. The solutions corresponding to the 25th and 27th singular vectors
contain extraneous surface segments which are undesirable and do not represent the topology
correctly, Only the 26th solution vector (Figure 5-9) represents the initial points accurately
and at the same time corresponds to the minimum non-algebraic distance error,
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Figure 5-8: Seventh Singular Vector Solution to Fit of B-spline Curve Points
Residual Error = 0.0101 (Algebraic Distance)

Table 5-3: Algebraic Distance vs Non-algebraic Distance Error
from Fit of Parametric Bezier Surface Points

Singular Vector

Algebraic Distance

Non-Algebraic Distance

27 0.00152 0.0836
26 0.00195 0.0052
25 0.00267 0.0922
24 0.00813 0.1969
23 0.01504 N/A
22 0.01824 N/A

1 2.43821 N/A
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Figure 5-9: 26th Singular Vector Solution to Fit of Bezier Surface Points
Residual Error = 0,00195 (Algebraic Distance)

/
AT
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As illustrated above, a way to improve on the selection of the correct solution is to use
the non-algebraic distance metric or the iterative least squares algorithm, trying to select at
each step the solution which minimizes the non-algebraic distance of the sample points from
the surface as was described in the previous section. This technique, however, is not able to
distinguish extraneous and possibly undesirable curve or surface segments which might exist
in the fitted curve or surface in a given domain as the curve example above indicated (Figure
5-6). Such cases require further user interaction and subdivision to eliminate undesirable

components.

An alternative method was examined for the selection of the best solution from the
space of possible solutions. A linear combination of the singular vectors resulting in small
errors was used to interpolate a few sampling points (curve ends etc.) and thereby determine
the best solution subject to such constraints. This technique was implemented, but was found
not to be very encouraging since it introduces a bias of the solution towards these
interpolated points. It is only useful, if the fitted curve or surface is required to pass through
specific points. Figures 5-10 and 5-11 present an application of this method. The three
smallest error singular vector solutions in the B-spline curve fitting example above were
linearly combined to interpolate the two ends of the parametric curve (Figure 5-10) or two
center points of the parametric curve (points 13 and 16, Figure 5-11). Figure 5-10 indicates a
solution similar to the smaller error solution in Figure 5-6 with the additional segments
slightly reduced in size. Figure 5-11 presents a different solution with unacceptable topology.
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Figure 5-10: Algebraic Curve Solution from Interpolation of Two Ends of
B-spline Curve
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Figure 5-11: Algebraic Curve Solution from Interpolation of Two Interior
Points of B-spline Curve



51

The above examples indicate the complexity of solution of the least squares problem, in
which various solutions may need to be examined. Singular value decomposition provides all
the necessary information to examine all possible solutions. All the other methods, to be
presented next, determine only one solution, usually the one with the smallest residual
(corresponding to s,) and as a result may miss the most appropriate solution. The above
examples also indicate the limitation of using the algebraic distance to select the best
solution, as compared to the non-algebraic distance which approximates more accurately the

geometric distance between the fitted curve or surface and the points.

Some additional and more practical examples will be presented next to indicate the
capabilities of representation using piecewise continuocus algebraic curves and surfaces.
First, piecewise continuous algebraic curves were used to model two-dimensional airfoil
sections. Most of the wing sections in common use are either NACA airfoils or have been
strongly influenced by the NACA investigations?>. For our example we used a 4-digit
NACA airfoil, specifically NACA 2410 airfoil, with 2% camber at 0.4 of the chord from the
leading edge, with section thickness 10% of the chord length?3. Thirty four points from this
section were used for the fit in the rectangle {-0.05,0.95]x[-0.1,0.1]. For simplicity, the
trailing edge of the foil was not included in the rectangle as it is normally modelled with
straight line segments. A second and a third degree (in each variable) Bezier algebraic curve
was used for the fit. The resulting curves are shown in Figure 5-12 for the second degree
algebraic curve and in Figure 5-13 for the third degree algebraic curve. The fitted points are
also shown in these Figures using crosses. As can be seen a single third degree algebraic

curve approximates very well the NACA section, while the same is not true for the second

degree curve,

In the second example, piecewise continuous algebraic surfaces were used to
approximate a high degree explicit polynomial ship hull form, which is a variation of the
simple parabolic hull form first introduced by Wigley. This hull form is given by

y(x,2) = ((1 - 22)(1 - x3)(1 +0.2x%) + 2(1 - 28)(1 - x2¥%)/3 (42)
where the coordinates have been non-dimensionalized so that the length coordinate x runs
from ¢-1,1), the depth coordinate z runs from (0,1) and the breadth coordinate runs from 0 on
the centerplane to 1 at the maximum breadth on one side. Since equation (42) is linear in y,

the approximating surface was selected also linear in y to avoid obtaining a reducible surface
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Figure 5-12: Second Degree Algebraic Curve Solution for NACA-2410 Airfoil

-

-

-
—

Figure 5-13: Third Degree Algebraic Curve Solution for NACA-2410 Airfoil

solution, A third order in the x and z and a second order in the y algebraic surface was used
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to approximate 176 points from equation (42) in the control box (0,1)x(0,1)x(0,1) (one
quarter of the hull form). A Bezier algebraic surface as well as various piecewise continuous
algebraic surfaces were examined. Figures 5-14 and 5-15 present contours for two of the
approximating surfaces. Figure 5-14 presents the Bezier solution, while Figure 5-15 presents
a B-spline solution with knot vectors in the x and z direction given by [0,0,0,0.5,1,1,1]. Both
solutions are very good approximations to the hull form given by equation (42), while the
B-spline solution with the larger number of degrees of freedom results in slightly less

residual error.

In the third example, an algebraic surface was used to approximate a standard Series 60
ship hull. The ship selected has a length of 400 ft, a half beam of 37.5 ft and a depth of 37.5
fi. The half front section of the ship was approximated using a Bezier algebraic surface
defined in the rectangular box [0,200]x[0,40]x[0,40]. One hundred and four points were used
(8 points per section, 13 ship sections) for the fit. The small number of points available
limited the number of possible degrees of freedom of the approximating surface. A very
good solution was obtained using a Bezier algebraic surface of second order in the y
directdon and third order in the x and z directions (18 degrees of freedom). Figure 5-16
presents this solution, together with the initial points on the ship stations displayed. The
approximation is very good, even near the edge of flat of bottom of the Series 60 hull where
the approximating surface is trimmed by the plane z=0 but is not precisely tangent to this

plane.

These examples indicate some of the capabilities of shape representation using low
order algebraic curves and surfaces. In all the examples the selection of each of the solutions
from the possible range of solutions was performed using the non-algebraic distance metric
described above.

The singular value decomposition technique was implemented using standard numerical
routines?0, The decomposition of matrix A is performed in two steps. First matrix A is
reduced to a triangular matrix R using Householder transformations and then the singular
value analysis of R is performed. The asymptotic number of operations required for this
decomposition is O(mnZ +6n3). The singular value computation is equivalent to the
complete solution of an eigenproblem and is an iterative computation. As a result the time
required for this decomposition is larger than the time required by the other methods to be
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Figure 5-14: Bernstein Algebraic Surface Fit of Modified Wigley Hull Form
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Figure 5-15: B-Spline Algebraic Surface Fit of Modified Wigley Hull Form
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Figure 5-16; Bezier Algebraic Surface Fit of Series 60 Hull Form
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presented next. The numerical stability of the singular value decomposition, however, is very

good24.

5.6 Least Squares Solution by Normal Equations Derivation
Reference?3 used the technique of normal equations applied to the homogeneous least
squares problem to determine an approximate fit. In this case the normalization used for the

distance metric holds the last coefficient in the basis constant.

The first step of this method is the derivation of the normal equations. Given A, as
above, of size mxn, we compute the Cholesky decomposition of

ATA=UTU (43)

i.e. we compute the unique nxn upper triangular matrix U with non-negative diagonal entries

to satisfy equation (43). The least squares problem becomes

ATAw=UTUw=0 (44)
This can be simplified further to
Uw=0 (45)

The second step of the method differs from the method of normal equations, since we
are applying the method to an implicit system in which none of the variables can be
identified as independent. In this step the last row of U is deleted and we obtain an (n-1)xn
upper triangular matrix U’. The least squares problem now becomes

Uw=0
and has an exact non-trivial solution. This non-trivial solution can be determined using at
most n-1 determinant evaluations23, provided the original matrix A has rank(A) > n-1. If the
rank of matrix A is less than n-1, then there is no unique non-trivial solution and the solution

fails. If the rank of A is n-1, the fit is exact and the residual is p = u_, = 0.

The quality of the fit (square root of sum of squares of residual vector) is given by up,,
the only non-zero element of the discarded last row of the triangular matrix. More details
and a proof of the method, can be found in%® and®®. An implementation detail is that instead
of the UTU decomposition and in order to improve the stability of the process, the modified
Cholesky decomposition was used by us as was also done in23, According to this, we

decompose
ATA =UTDU (46)
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where D is a diagonal matrix and the leading diagonal of the upper tiangular matrix U
consists of 1’s. In this case, again the last row of matrix U is discarded and the modified
problem is solved using determinant evaluations?3, The quality of the fit in this case is

\!ﬁ-n; and the last coefficient in the basis is normalized to 1.

The determinant technique described above is equivalent to setting the nth coefficient of
w to 1, moving the nth column of matrix A to the right hand side of equation (34) and then
solving for the rest of the coefficients using the ordinary least squares method of normal

equations24.

The determinant technique was also investigated in our work. Each time, the user
selects the coefficient of the basis function to be set equal to 1, using information from the
geometry of the approximating curve or surface in order to avoid the singularities of such a

normalization.

The main advantage of this method is its speed. The time required to form the normal
equations is O(mn2/2), while the Cholesky decomposition and the determinant evaluation
require only O(7n3/6) operations (a total of O(mnZ/2 + 7n3/6) operations). The main
disadvantage of this method, is stability and accuracy24, The replacement of A by ATA has
the destabilizing effect of squaring the condition number of the matrix. When A is ill-
conditioned, normal equations aggravate the situation. To perform this process, higher

precision is required as compared to the singular value decomposition technique.

Reference?? preferred this technique for efficiency and the capability for fast
incremental addition and deletion of points. In order to avoid the numerical problems
reference?3 increased the precision used. For the present application, high efficiency was not
considered as important. In addition, and more importantly, the technique of normal
equations provides a single solution, usuaily the smallest error solution, and does not provide

other possible solutions with equally small residual errors.

5.7 Least Squares Solution by Householder Triangularization
A more accurate alternative to the normal equations solution of the least squares
problem is to triangularize matrix A directly, using Gauss elimination with partial pivoting or

Householder transformations. Using Householder transformations with column pivoting we
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can decompose thé mxn matrix A to get

QAP=U, where UT=[U’T 0] (47)
U’ is an nxn upper triangular matrix, 0 is an nx{m-n) null matrix, Q is the product of the
Householder transformation matrices (an orthogonal matrix) and P is a column permutation

matrix?*. The least squares solution is obtained in a similar way to the normal equations

solution, by approximately solving

Uw=0 (48)
by neglecting the last row of U’ and solving the modified problem using determinant
evaluations to determine the coefficients w. The solution of equation (48) is identical to the

solution of equation (45).

During this decomposition, pivoting is performed by choosing at each step the column
with the largest sum of squares to be reduced next. Thus, this algorithm avoids the
singularity problem of setting one of the coefficients of the fit to a constant value. It locates
the pivots (diagonal entries of matrix U’) in decreasing order (in absolute value). As a result
the solution obtained is always the minimum length solution, since the residual of the least

squares fit is lu’ |, the last and smallest pivot.

The operation count for this decomposition is O(mn? + 2n3/3), usually larger than the
method of normal equations and Cholesky decomposition. It is numerically very stable, but
does not provide adequate information about alternative solutions with similarly small
residual errors, as is the case with singular value decomposition.  Householder
trtangularization of matrix A is usually the first step in the singular value decomposition of

matrix A to improve its speed and ensure its stability24,

5.8 Summary

The singular value decomposition technique proved to be the most effective technigue
for algebraic curve and surface approximation of point data, because of its generality,
stability and the insight it provides on the possible set of solutions. Using singular value
decomposition, a series of solutions with known and small residuals can be obtained. Some
of these solutions can be linearly combined to interpolate points and satisfy other geometric

constraints.

There is still no clear automated way of selecting a solution, since additonal and
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unwanted curve or surface segments might appear on the control box, a case which requires
user interaction and subdivision. An additional area of investigation, in the approximation of
point data using piecewise curves or surfaces (B-spline formulaticn) is the determination of

optimal knot placement to minimize the residual error of the approximation.
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6. Interrogation Techniques

This chapter presents some of the interrogation techniques used in the creation and

analysis of piecewise contintous algebraic surfaces.

6.1 Contour Display

According to the proposed formulation, as was also indicated in previous chapters, the
algebraic surfaces may be easily visualized using planar contours perpendicular to each of
the coordinate axes x, y or z. Each of these contours is an algebraic curve defined in a

rectangle and can be visualized using techniques for tracing algebraic curves!0 11,

Reliable and efficient tracing of algebraic curves is a topic of active research and
development both in academia and industry. Tracing a given algebraic curve in a
topologically reliable manner is slower and much more complex than evaluating parametric
curves. Tracing methods for algebraic curves can be classified in four main categories®.

¢ analytic

= lattice evaluation

e marching

e subdivision
Most of the methods have been developed in the context of interrogation of intersections of

polynomial surfaces.

In this work the tracing method developed in our laboratory!! is used for contouring
algebraic surfaces. This tracing method exploits the reformulation of the algebraic equation
of the curve in the Bernstein or B-spline basis and uses the geometric properties of the
coefficients (weights) as described in Chapters 2 and 3 to obtain a reliable and complete trace
of the algebraic curve. Each of the contours is obtained as an intersection of a parametric
surface patch and a plane. This method first subdivides the underlying B-spline control
surface to its polynomial elements. Then, the significant points of the curve (including
border, turning and singular points) are computed using direct numerical techniques, such as
minimization and Newton methods, and are used to split the surface into independent sub-
patches which are processed using adaptive subdivision and faceting techniques.
Verification of the computation of all turning and singular points is achieved by interrogation
of the derivative patch weights after subdivision at available significant points. In case of
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repeated failure of the direct numerical techniques to identify turning and singular points,
binary subdivision’ is employed for the computation of such points. This a priori
computation of significant points ensures resolution of small details and robustness of the

tracing algorithm.

6.2 Ray Tracing Display

An algorithm has been developed in our laboratory for ray tracing of piecewise
continuous algebraic surfaces??. According to this algorithm, the piecewise algebraic surface
is first subdivided in its polynomial Bemstein components using a subdivision algorithm

1817 Each of these components is then ray traced using the following steps.
¢ Rays from a light source are cast to all the pixels in the computer screen.

¢ Each of these rays is intersected with the control box containing the algebraic
surface patch. Only the rays intersecting the control box need to be further
considered and as a result unnecessary computation is avoided.

« If there is an intersection with the control box, the ray line equation is substituted
directly into the implicit equation of the surface and the univariate polynomial of
the ray intersection with the algebraic surface is obtained. This polynomial has
degree, at most, equal to the sum of the degrees of the surface in each of the
coordinate directions and is expressed in the Bernstein basis. It is obtained for
the different degree algebraic surfaces using a symbolic manipulation system
such as Macsyma?®. The coefficients of this polynomial are symbolic
expressions of primitive data.

¢ Using the variation diminishing property of the Bemstein basis, intervals
containing a single root of the polynomial intersection equation are identified
using recursive subdivision<”.

¢ The intervals containing single roots are used in connection with a general
nonlinear equation solver0 to efficiently identify simple roots. The first or all
roots within the box of interest may be identified in this manner.

¢ At each of the intersection points the normal to the algebraic surface is obtained
and an appropriate lighting model (Phong model39) is employed to determine the
intensity of the corresponding pixel in the computer screen.

Figures 6-1 to 6-7 display some ray traced images of the algebraic surfaces presented in
the previous chapters. Figure 6-1 displays the first octant of a sphere, while Figures 6-2 and
6-3 present the "pulled" and "pushed" octant of the sphere as were these also presented in
Figures 4-4 and 4-3. Figure 6-4 presents the ellipsoid, while Figure 6-5 presents the doubly
curved blending type of surface which was obtained in the previous Chapter using least
squares fiting of points. Figures 6-6 and 6-7 present the Wigley Hull and the Series 60 type
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of ship hull approximated in Chapter 5 and also shown in Figures 5-14 and 5-16.
Implementation of the above algorithm was performed on a DEC Vaxstation II driving a
Silicon Graphics 3030 workstation through the IRIS remote graphics library to display the
image. The time required for each of these images depends on the order of the algebraic

surface and on the size of the control box with respect to the graphics screen.

6.3 Volume and Moment of Inertia Evaluation

The volume enclosed on one side of an algebraic surface and the control box as well as
the various moments of inertia of the enclosed volume about the x, y or z coordinate axes
were obtained using an octree subdivision technique. The algorithm used exploits some of

the geometric properties of the coefficients (weights) of the algebraic surface representation.

A point P = (x,Y;Z) is considered to be inside or on an implicit algebraic surface
provided f(x;y;z) < 0, while it is considered to be in the exterior of the algebraic surface if
f(x,¥;,z) > 0. The important property of the present formulation to use in the octree
algorithm is the following. If the coefficients (weights) of a control box are all non-positive,
then f(x,y,z) € 0 and the whole box is contained within a surface. Alternatively, if the
coefficients (weights) of a control box are all positive, then f(x,y,z) > 0 and the control box is
exterior to the surface. This is a direct result of the non-negativity of each of the B-spline

basis functions.

According to the octree algorithm implemented, the control box of the piecewise
algebraic surface is subdivided using the Oslo algorithm!7 into eight smaller subboxes. Each

of these subboxes is checked for the following:

e If all the coefficients of the subbox are positive, there is no part of the surface
inside this subbox and the subbox can be neglected.

o If all the coefficients of the subbox are non-positive, the subbox is contained
within the surface and its volume and moments of inertia about the coordinate
axes can be added to the total volume and moments of inertia enclosed by the
surface.

o If there are coefficients with both signs, then the subbox contains a portion of the
surface and further subdivision is required.

The subdivision is terminated, when the dimensions of the subboxes reach a predefined limit
(e.g. 0.1% of the original size of the control box). At the termination point some of the
subboxes are still undecided since these subboxes contain a small portion of the surface. For



Figure 6-1: Ray Traced Image of an Octant of Figure 6-2: Ray Traced Image of a "Pulled”
a Sphere Octant of a Sphere

Figure 6-3: Ray Traced Image of a "Pushed” Figure 6-4: Ray Traced Image of an
Octant of a Sphere Ellipsoid
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Figure 6-5: Ray Traced Image of a Type of Figure 6-6: Ray Traced Image of the
Blending Surface Wigley Hull

Figure 6-7: Ray Traced Image of the Series 60 Type Hull
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the final volume and moment of inertia estimates we can use only the subboxes interior to the
surface to obtain a lower bound to the volume and inertia estimates, or we can use both the
interior and undecided subboxes to obtain an upper bound to these estimates. A more
accurate approximation will be to use the interior subboxes and half of the contribution from
the undecided subboxes for faster convergence to the actual volume and moment of inertias

enclosed by the algebraic surface.

The octree algorithm implemented is very efficient and does not require detailed tracing
of the algebraic surface. Table 6-1 presents an example showing the convergence of the
volume enclosed by the first octant of a unit sphere in a unit rectanguiar box.

Table 6-1: Convergence of Volume Estimate Enclosed by the First
Octant of a Unit Sphere. Exact Volume, n/6 = 0.523599

Minimum Undecided Lower Bound Upper Bound Volume

Subbox Size Subboxes Estimate
0.5 7 0.4670 0.5625 0.514765
0.1 34 0.5050 0.5313 0.518150
0.01 145 0.5176 0.5244 0.521006
0.001 595 0.5221 0.5238 0.522941
0.0001 2404 0.5232 0.5236 0.52340

6.4 Curvature Evaluation
An important tool in the design of free form shapes using the algebraic surface
formulation is the capability of evaluating the curvature variation on the surface to verify the

absence of undesirable features and oscillations of the surface.

In the present implementation, we have developed a capability to evaluate and display
the curvature of the surface on the planes containing the contours used to display the surface.
Since each of the surface contours is obtained as the trace of an algebraic curve in a plane,
the curvature of this contour can be obtained similarly as the curvature of the corresponding
planar algebraic curve. The curvature k of an implicit curve defined by f(x,y) = 0 is given by
_ SR YL S 49)

(f; 2 + f'y 2)3f2

k

An example illustrating the use of curvature is presented in Figures 6-8 and 6-9. These
figures display the curvature on two of the algebraic curve solutions of the fitting example
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presented in the previous Chapter. The curvature lines of the algebraic curve and of the
parametric B-spline curve used to obtain the fit are shown. In these Figures, one can see the
degree to which the algebraic curve curvature approximates the curvature of the initial
parametric B-spline curve which has a discontinuity also at the internal knot and identify the

existence of undesirable curvature fluctuations or additional inflection points.

3

Figure 6-8: Curvature Lines for Smallest Singular Value Algebraic Curve
Fitted Using B-spline Curve Parametric Points
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Figure 6-9: Curvature Lines for Better Algebraic Curve
Fitted Using B-spline Curve Parametric Points
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7. Conclusions and Recommendations

A method of representing algebraic surface patches within a rectangular box was
described and extended to handle piecewise continuous algebraic surface patches.
Techniques to control and manipulate the shape of the algebraic surface patch within a
rectangular box were also presented together with some useful properties of this
representation. The creation/approximation of lower dimensional data with piecewise
continuocus algebraic surface patches using lqast squares was also described in detail. Several
interrogation techniques useful in the analysis of piecewise continuous algebraic surfaces

were also presented.

As was seen in the previous chapters, low order piecewise continuous algebraic curves
and surfaces allow representation of a large class of fairly complex sculptured shapes and
therefore provide a viable alternative to modeling shape with piecewise polynomial
parametric surface patches. Modeling with low order algebraic curves and surfaces in
rectangular boxes in terms of the B-spline basis provides a capability for piecewise
continuous shape representation, allowing for continuity or discontinuity control of curves
and surfaces and the representation of complex artifacts. The geometrical significance of the
algebraic curve and surface coefficients facilitate intuitive understanding, interactive

refinement and reliable and efficient processing of the representation.

The degree reduction in the resulting representation, facilitates computationally
complex interrogation problems. Low order algebraic surfaces lead to intersection curves of
lesser degree compared to the intersections of the widely used rational polynomial
biquadratic and bicubic patches. In the algebraic patch case within rectangular boxes defined
by triple B-spline products, intersections of two patches of degree two in each variable result
in an algebraic curve of degree eight in each variable. Similarly, for patches of degree three
in each variable, the intersection curve is of degree eighteen. Similar intersections for
biquadratic and bicubic rational patches result in algebraic curves with degrees sixteen and
fifty four in each variable, respectively. Similarly low order algebraics lead to low degree
algebraic blending surfaces?.

Low order algebraic surfaces naturally permit the creation of a class of piecewise

continuous free-form volume primitives within rectangular boxes to be used in a



Constructive Solid Geometry environment. Closed volumes, as well as portions of closed
volumes can be modeled in a unified environment (cubes, ellipsoids, general surfaces with
the same representation) allowing efficient and robust implementation of Boolean

combinations of volumes, interference preprocessing algorithms etc.

Another application of the least squares analysis techniques presented in this work is in
the field of Computer Vision. The majority of the work on least squares fitting of algebraic
curves and surfaces comes from this area, arising from creation of curve and surface

representations from measured point data.

Representing shape with algebraic surfaces is not as intuitive as representing them with
parametric polynomial surfaces. In addition, there are limnitations to the shape complexity
which can be represented by low order algebraic curves and surfaces of the type studied here
and this is directly related to the reduced flexibility of the representation such as the inability
to directly provide three-dimensional curve boundaries on the patches and to conn'oi the
slopes across such boundaries. In the modeling system studied here, such boundaries may be
approximately constructed using primitive intersections. The degree of flexibility of such
surfaces may be enhanced in specialized applications by changing the shape of the control
box. For example, extensions of the proposed methodology to representations within non-
rectangular but hexahedral boxes such as cylindrical or spheroidal may provide additonal
advantages for specialized sculptured objects constructed in terms of cylindrical or spherical

sections.

An area of future attention in shape creation is the use of control curves obtained from
least squares approximation of points to generate the three-dimensional shape in a sweep-
type operation. The problem of fairing piecewise continuous algebraic curves and surfaces
needs also to be addressed to avoid unwanted curvature fluctuations or large higher

derivative discontinuities on the curve or surface representation.

Another area of future attention is the use of the proposed formulation to represent
shape subject to constraints such as tangencies in faces, flat portions e.t.c.. Sometimes it is
desired to generate surfaces with specific normal vectors at one of the faces of the bounding
box (e.g. surface tangent to a face along a particular curve on that face). In order to achieve

this, a higher order reducible algebraic equation with multiple components is required. It is



worthwhile to examine the use of piecewise continuous algebraic B-spline surfaces of lower

degree to approximate the high order algebraic equation in such regions.

The development of a modeling system with piecewise low order algebraics, also
requires research on reliable and cfficient interrogation operators, such as intersection, offset
and blend. Intersection operators are, for example, needed in modeling the internal
subdivision and structural reinforcement of vehicles with free-form bounding surfaces such
as almost all marine and aerospace structures, and in numerous analysis and fabrication tasks.
Offset operators are required in numerical control manufacturing, representation of material
shells, such as the plating of ships, airplanes and automobiles, dimensional tolerance and
access space representation for manufacturing simulation and robotic applications. In
addition, intersections and offsets are needed in shape feature recognition for automated
analysis. Finally, blends are needed in the representation of smooth transitions between
surfaces either to provide explicit specification of manufacturing operations or to meet

important functional requirements, such as structural and hydrodynamic.



10.

11.

12.

13.

14,

15.

16.

17.

References

Sederberg, T. W., ‘‘Planar Piecewise Algebraic Curves’’, Computer Aided Geometric
Design, Vol. 1, 1984, pp. 241-255.

Hoffmann C., Hopcroft J., ‘‘“The Potential Method for Blending Surfaces and
Comers’’, Geometric Modeling: Algorithms and New Trends, SIAM, 1987, pp.
347-365.

Farouki, R. T., Hinds, J. K., ‘A Hierarchy of Geometric Forms’’, JEEE C‘omputer
Graphics and Applications, Vol. 5, No. 5, May 1985, pp. 51-78.

Farouki, R. T., “*“The Characterization of Parametric Surface Sections’’, Computer
Vision, Graphics and Image Processing, Yol. 33, 1986, pp. 209-236.

Sederberg, T. W., Anderson, D. C., Goldman, R, N,, ‘“‘Implicit Representation of
Parametric Curves and Surfaces’”, Computer Vision, Graphics and Image
Processing, Vol. 28, No. 1, 1984, pp. 72-84,

Sederberg, T. W., Implicit and Parametric Curves and Surfaces for Computer Aided
Geometric Design, PhD dissertation, Purdue University, August 1983.

Geisow, A., Surface Interrogations, PhD dissertation, School of Computing Studies
and Accountancy, University of East Anglia, Norwich NR47TJ, U, K., July 1983.

Sederberg, T. W., ‘“‘Piecewise Algebraic Surface Patches”, Computer Aided
Geomerric Design, Vol. 2, 1985, pp. 53-59.

Patrikalakis, N. M., ‘‘Piecewise Continuous Algebraic Curves in Terms of B-
Splines”’, Submitted for Publication, February 1987.

Patrikalakis, N. M., Prakash, P. V., Computation of Algebraic and Polynomial
Paramerric Surface Intersections, MIT Sea Grant Report No. 87-19, 1987.

Prakash, P. V., Computation of Surface-Surface Intersections for Geometric
Modeling, PhD dissertation, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1988.

Kahan, W., “A Survey of Error Analysis’’, Proceedings of the International
Federation for Information Processing Congress 1971 Vol. 2, August 1971, pp.
1214-1239,

Farouki, R. T., Rajan, V. T., ““On the Numerical Condition of Bemstein
Polynomials’’, IBM Research Report RC 12626, March 1987.

Sederberg, T. W., Pamry, S. R., ‘“‘Comparison of Three Curve Intersection
Algorithms”’, Computer Aided Design, Vol. 18, No. 1, January 1986, pp. 58-63.

De Boor, C., "*On Calculating with B-Splines’’, Journal of Approximation
Theory, Vol. 6, 1972, pp. 50-62.

Gordon, W. J., Riesenfeld, R. F., B-Spline Curves and Surfaces, Computer Aided
Geometric Design, Edited by Bamhill, R., and Riesenfeid, R. F., Academic Press,
Inc., 1974.

Cohen, E., Lyche, T., Riesenfeld, R., ‘‘Discrete B-Splines and Subdivision



18.

19.

20.

21.

22,

23,

24.

25.

26.

27.

28.

29.

30.

73

Techniques in Computer-Aided Geometric Design and Computer Graphics™’,
Computer Graphics and Image Processing, Vol. 14, 1980, pp. 87-111.

Lyche, T., Cohen, E., Morken, K., “‘Knot Line Refinement Algorithms for Tensor
Product B-Spline Surfaces’’, Computer Aided Geometric Design, Vol. 2, 1985, pp.
133-139.

Chryssostomidis, C., ‘‘Computer Aided Interference Control and Space
Reservation™, Proceedings of the Conference on Shipyard Operation and Ship
Design, Tokyo, 1973.

Cohen E., Lyche T., Schumaker L., ‘‘Algorithms for Degree Raising of Splines’’,
ACM Transactions on Graphics, Vol. 4, No. 3, 1985, pp. 171-181,

Carlson R. H., “‘Design of an Algebraic Surface Editor’’. Naval Engineer’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1988,

Boehm W., “‘Inserting New Knots Into B-Spline Curves”, Computer Aided
Design, No. 12, 1980, pp. 99-102.

Praut, V., “‘Direct Least-Squares Fitting of Algebraic Surfaces”, ACM Computer
Graphics, Vol. 21, No. 4, 1987, pp. 145-152.

Lawson, C. L., Hanson, R. J,, Solving Least Squares Problems, Prentice Hall Inc,
Englewood Cliffs, NJ., 1974,

Abbott I. H,, Von Doenhoff A. E., Theory of Wing Sections, Dover Publications, Inc.,
New York, 1959.

NAG, Numerical Algorithms Group FORTRAN Library, NAG, Oxford, England,
1985.

Moran B. A., *‘Ray Tracing Piecewise Polynomial Surface Patches’’, Master’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 1988 (in
preparation).

Symbolics Inc., VAX UNIX MACSYMA Reference Manual, Symbolics Inc., 1985.

Lane, J. M., Riesenfeld, R. F., ““Bounds on a polynomial’’, BIT: Nordisk Tidskrift for
Informations-Behandling, Vol. 21,, No. 1,, 1981, pp. 112-117.

Foley J. D., Van Dam A., Fundamentals of Interactive Computer Graphics, Addison-
Wesley Publishing Company, 1982,






